
ETL Testing
Concepts

© 2020 Torana Inc.
All Rights Reserved. Confidential. Not for Re-circulation.

Torana Inc.
60 Long Ridge Road, Suite 303, Stamford CT 06902.
Phone: (203) 666-4442
contact@icedq.com

This guide provides core concepts of ETL testing. This

knowledge is gained while developing iceDQ software and

learning from numerous implementations of ETL testing projects.

Let’s dive right in.

What is ETL Testing?
ETL Testing certifies that an ETL process is correctly extracting,

transforming, and loading data as per the specifications. ETL testing is done

by validating and/or comparing the input and output data transformed by

the ETL process.

ETL testing is used in data-centric projects having a huge amount of data or

substantial number of data pipelines. It should not be confused with

application testing which usually involves a small amount of transactional

data.

Why ETL Testing is Required?
Anytime a piece of software is developed, it must be tested. The ETL

process is ultimately a piece of software written by a developer. An ETL

process is at the heart of any data-centric system and/or project and

mistakes in the ETL process will directly impact the data and the

downstream applications.

1. Without ETL testing there is now way of knowing if the process is built to
the specifications and as per requirements.

2. Without ETL testing the code cannot be released or deployed in
production.

3. ETL testing enables root cause analysis to identify data issues due to the
source data or the ETL process.

4. It is very expensive and difficult to fix data issue sin production. ETL
testing ensures that the data issues are caught early in the development
lifecycle.

ETL Testing Basics
ETL processes read data from a source, transform the data, and then load it

in the destination databases. An organization can easily have thousands of

such ETL jobs processing their nancial, customer, or operations data.

“Just like any piece of code that is developed,

the ETL code must be tested to ensure that

the developers have written the code

correctly.”

ETL testing is unique since,

ETL processes are background processes and don’t have user screens.

ETL testing involves a large amount of data.

ETL processes are like functions where testing requires execution of the

ETL process and then the comparison of input and output data.

The defects in the ETL processes cannot be detected by simply reviewing

the ETL code.

How to do ETL Testing?
ETL processes are evaluated indirectly through black box testing approach,

wherein the ETL process is first executed to create the output data and then

by verifying the output data the quality of the ETL process is determined.

ETL testing process is summarized in the following three steps:

A. First, the ETL code is executed to generate the output data.
B. Then the output data is compared with the predetermined expected data.
C. Based on the comparison results, the quality of the ETL process is

determined.

For ETL testing you can follow the legacy approach, which is outdated, or

the newer rules based ETL testing pioneered by iceDQ.

1. Difference between Manual Testing and ETL Testing
2. Legacy- Pseudo code-based ETL Testing
3. Legacy- Golden Copy based ETL Testing
4. Rules Based ETL Testing

1. Difference between manual testing and ETL Testing

In this approach, the data created by the ETL

process is sampled and inspected visually by a

tester. If the data output is as excepted the ETL

process is certified.

This manual testing approach is not scalable as humans are not capable of

dealing with more than a few hundred records.

ETL testing vs manual testing:

It is resource-intensive, hence very costly.

Testing is based on few sampled records.

It is ad hoc hence not repeatable.

The tester must do all the testing on his desktop.

Incomplete test coverage.

Regression testing is not possible.

2. Legacy- Pseudo code-based ETL Testing:

QA recreates pseudo ETL code in parallel to the developers’ actual ETL

process. This pseudo ETL code processes a subset of data and generates an

output. The actual ETL process also uses the same input data and generates

data. Then the ETL tester compares the data generated by both the

processes and documents the differences. If the data is an exact match, then

the ETL process passes the quality test.

Parallel development of pseudo ETL code by QA team is ridiculous

because:

Crazy amount of time, money and resources are wasted in reproducing

the pseudo ETL code by the QA team.

Since the pseudo ETL code is also development, there is no guarantee that

the pseudo ETL code developed by the QA team is also error free and

hence, the data output generated by it.

3. Legacy- Golden Copy based ETL Testing:

In this method, QA manually creates expected data output based on their

understanding of the data processing logic. First the manual data, also

called as golden copy is created and is stored in a database. Next, the ETL

process is executed, and the data generated by the ETL process is

compared to the golden copy of data that was created by the QA team. The

ETL process is certified based on the comparison results.

Only works with sampled data.

Does not ensure test coverage.

Does not work if the input data changes.

This approach is also severely limited because:

Large Data Volume: The recent exponential growth in the data volumes

as well as growth in the number of ETL processes have made the above

three approaches pretty much useless. It is no longer feasible to manually

test the ETL processes.

Data Sampling: Data sampling does not work because there are many

corner cases that will be only discovered if almost all the data is

processed, and the output generated by the ETL process is inspected.

Dynamic Input Data: The output generated by an ETL process is totally

dependent on the input data; and the input is dynamic. Hence any

conventional ETL testing that uses a predetermined output, will not work.

Cross database comparisons: Since ETL processes data from one

system and loads into another, it is almost impossible to bring the data in

one place and then do the comparison.

The rule based ETL testing is designed to avoid all the above pitfalls. Its

concept is derived from auditing of financial transactions. Example, if $100 is

transferred from account ‘A’ to account ‘B’. Then for the financial audit, the

balance in account ‘A’ must reduce while the balance in account ‘B’ must

stimulatingly increase by the same amount.

Account ‘A’ (Original Balance – New Balance) = Account “B” (New Balance –

Original Balance)

4. Rules Based ETL Testing:

An ETL process is a set of actions that transforms an input data into a

desired data output. Rules based ETL testing understands these data

transformation requirements and derive data audit rules which are later

used to test the ETL processes.

The prior three legacy methods have inherent limitations. Beyond the

obvious economic reasons there few fundamental flaws because of

which the conventional approach towards ETL testing will never work.

This same concept has been expanded in for ETL testing. Wherein the

logicof ETL transformation is understood and the audit rules are created to

certify the ETL process.

The data can change but the rules don’t.

No need to recreate the ETL processes.

There is no limit on data volume.

No manual interventions.

No data sampling is required.

The rules are stored in central knowledge repository.

The rules are executed on the server via a schedule or on-demand.

Cross database testing is possible.

The rules can be stateless to supports dynamic change in the input data.

ETL Testing Concepts with Examples
Rules based ETL testing operates under the two assumptions:

– Input data provided will change for each ETL run.
– The data transformation rules and conditions remain same unless there
are changes in business requirements.
For ETL testing you must understand the concepts of Static ETL testing and
the Dynamic ETL testing.

1. Static ETL Testing

For static ETL testing only the output data is
used for certifying the ETL process. The output
value generated by ETL process is compared
to a fixed value(s) or a condition that is
previously known or defined by the tester. The
input data used by the ETL process is not
taken into considerations.

Advantages of Rules based ETL Testing:

Here are few examples:
a. Static Value Example: The Account Category column can only have one

of the three values, ‘Checking, Savings, Trading’
b. Static Condition Example: Net amount must equal Gross Amount minus

sum of Tax, Commission and Fees.

2. Dynamic ETL Testing

For dynamic ETL testing both input and
output data is taken into considerations while
testing the ETL process. In many cases the
output data of an ETL process is totally
dependent on the input data provided at
runtime to the ETL process. Even though the
transformation logic is fixed, the final value
cannot be determined without knowing the
input values used by the ETL process at
runtime.

Thus, the ETL testing must support the dynamic nature of input data that is

provided during the execution. This can be represented by the following

simplistic equation.

Input Data + Transformation = Output Data

The ETL testing example below will explain the dynamic ETL testing

concept:

An ETL is processing customer list. The list contains two types of customers:

corporate and individuals. The ETL developer is asked to only load individual

customers and not corporate customers. To test this ETL process the total of

individual customers in the source must exactly match the customers in the

target.

How many customers should be in the target table? That can only be known

by counting individual customers in the source that were provided to the ETL

process at runtime.

Types of ETL Testing
Completeness data qualitrep eht sa den ed si noisnemid ycentage of

data populated vs. the possibility otnemll luf %001 f.

The types of ETL testing are listed below

1. ETL Source Data Validation Testing
2. ETL Source to Target Data Reconciliation

Testing
3. ETL Data Transformation testing
4. ETL Target Data Validation Testing
5. ETL Referential Integrity Testing
6. ETL Integration Testing
7. ETL Performance Testing

1. ETL Source Data Validation Testing

This ETL testing checks input data for validity. Because if the input data

itself is not valid you cannot expect the ETL process to transform the data

correctly or for the process to even execute at all.

#etl-functional-testing

The test involves checking for nulls, formats, reference values, duplicates,

etc. For example,

– Verify that there are no null values in attribute “Name” attribute
– The format of the date in the DOB column should be “YYYY-MM-

DD”

2. ETL Source to Target Data Reconciliation Testing

This test is mostly done to prove that there is no leakage while transporting

or staging the data. Comparing the source (input) data and the target

(output) data ensures that data completeness and consistency is not lost

because of any issues in the ETL process. For example,

– Make sure the row count between the source and the target table is
matching.
– Compare all the customer data in the source and the table to ensure that
ETL loaded the data in the destination table as per the mapping rules.

3. ETL Data Transformation Testing

Data Transformation Tests ensures that every row has transformed

successfully based on the mapping document. Testing Data transformations

involve reconciling the data between source and destination to verify that

the ETL is transforming the data as expected. For example,

Test the transformation of first name and last name source column into full
name target column.

– Make sure the ETL is calculating the values correctly.

4. ETL Target Data Validation Testing

Data Validation Tests is used to validate a single data source, be it a

database table, data extracts, dimension table, or a fact table.

– Check if there are any nulls in the name column.

– Format of the email should be valid.

– There should be only one active record in a dimension table.

– Date in birth date column should be a valid date.

– Check if the Net amount cannot be less than zero.

5. ETL Referential Integrity Testing

The referential integrity testing ensures that the child table only have foreign

key values that exists in the parent table.

In the case above the gender table has M, F and Others. The ETL testing

involves reconciling so that the Gender attributes in the customer table will

only have one of those three values.

6. ETL Integration Testing

ETL integration testing is done to verify that the ETL process has integrated

the data correctly. One of the key purposes of an ETL process is to integrate

data from multiple data sources or multiple subject areas.

Vertical Integration Testing: In this case data
is brought in from multiple data sources and
integrated into a table. Example in this type of
integration customer list from CRM system
and accounting system is integrated in a
single unified list. The integration must ensure
that:

Attributes from multiple sources are mapped correctly to the destination

No duplicate records exist.

ETL integration testing involves creation of multiple ETL testing rules to

verify if the data integration is done correctly. This is true because even

though there might be one ETL process that integrates the data, it

nevertheless contains multiple business rules for data transformation. ETL

testing must ensure that each of those integration rules are implemented

correctly. This testing includes all the above types of testing.

– Ensure the data is going to the respective attributes
– No duplicate entities exists and at the same time no unrelated entities

are unified.

– Ensure the entities are linked correctly.

7. ETL Performance Testing

Even if the ETL process is coded correctly it is possible that, when executed

it takes unreasonably more time to finish the job. ETL performance testing

measure and the time taken to finish processing a certain number of records

vs. user expectations. The ETL performance metrics are usually measured in

the number of rows processed per seconds.

To measure performance three metric are needed, ETL processes start time,

ETL process end time and number of records processed. The sources for the

above metrics are:

Horizontal Integration Testing:

In this scenario data from multiple subject

areas and sources are linked together to form

meaningful relationship. A typical example is

to link the salesperson data with sales data to

calculate the commission.

Mostly referential integrity /foreign keys are

created, and different tables are linked to

together.

– Special ETL log table which captures all the ETL process execution stats.
– Some of the metrics are derived from the target table with row level

logging attributes such as record insert datetime, record update date time.

There is no universal standard for performance testing numbers, so it all

depends on the expectations. However, some parameters must be taken

into consideration that directly affects the ETL process performance

numbers.

– Number of records inserted.

- Number of records updated or deleted.

– Logging is enabled or not in the target database.

– Row level locking setting in destination tables.

– Presence of indexes.

– The size of the processing machine.

ETL Testing Scenarios
Following ETL testing scenarios should be considered for any data
projects.

1. Record level ETL tests
2. Attribute Data level ETL tests
3. Aggregate Data level ETL tests
4. Execution Level ETL tests

The ETL testing scenarios repeat in multiple situations regardless of the type

of data being processed.

ETL Test
Scenarios Test Description

Record Level
Scenarios These are record level ETL tests

Record
Count
Testing

This is a primary test, to check if all the available records
are populated – Nothing more, nothing less. This test
ensures that the ETL process has loaded all the records.
But it does not know if the data in the records is correct.

Duplicate
Records
Testing

Duplicate records happens if primary key or unique key
constraints are not implemented in the database. In such
cases specific ETL Tests are needed to ensure duplicate
records are not generated by the ETL process.

Record
Aggregation
Test

In many scenarios transaction level records are aggregated
by time, or other dimensions. Test are needed to ensure
that the dimension chosen for the aggregation of records
are correct.

Row Filter
Testing

Often ETL developers miss or adding filters or sometimes,
forget to remove filters that were added during testing.
Create ETL tests to ensure proper data filters are
implemented as per requirements.

Type II
dimension
Testing

The type ii dimensions ETL logic retires old records and
inserts new records.

This Test to ensure that only one valid record is present,

and the expiry dates don’t overlap.

Attribute
Level
Scenarios

These are attribute level tests.

Data
mapping
Testing

During the development of the ETL process the developer
might do mistake in mapping the source and target
attributes. This ETL test ensure that the data is getting
populated in the correct target attributes.

Calculations
Numeric and
date

There are many mathematical calculations used to
populate calculated fields. This ETL test ensures that the
calculations are done correctly by the ETL process.

Expressions
String

Various string manipulation and operations such as
CONACT, SUBSTRING, TRIM, are done on strings. This test
ensures string transformations are done correctly by the
ETL process.

Data
Truncation

Many time the data processed by the ETL process truncate
the data and/or if the target column has shorter size the
data can be get truncated. This ETL test ensures string
data is not truncated by the ETL process or during the load
time.

Data
Rounding
Numbers
and dates

This can happen if the datatype is not chosen correctly in
either the ETL process variables or the target table
datatypes.
Numbers can get rounded; dates can lose time or second
components. Ensure decimal data is not rounded
incorrectly.

Formatting
Issues -Date
and Strings

This mostly happens with string datatypes as it accepts
data in almost any format. Many cases dates are p The
date Ensure the date, or string data is formatted
correctly.Reference

Data or
Dimension
Lookup

Ensure that the child or transaction attributes have
reference data that are present in the master.

Aggregate
Scenarios

This involves testing of summarized (balances,
snapshot, aggregates) data.

Aggregate
calculation Ensure the data aggregations of data is done correctly.

Simple Row
counts

Ensure the number of records populated is not more and/or
less than the expected number of records. The row count in
the destination matches to the source system.

Simple
Sums

Match the sums of numeric values between source and
target to ensure the numbers are correct.

Grouped
Row Count

Reconcile counts for different groups between source and
target.

Group Sums
Reconcile aggregate sums for different groups between
source and target.

Execution
Scenarios

This testing involves testing of ETL processes related
to their executions.

Incremental
Load

Often data is loaded in increments based on delta logic.
This ETL Test ensures the incremental loads are reconciling
correctly with source and no gaps or overlapping are
generated.

Multi
Execution
Tests

Normally you won’t expect same data to be processed
again. But in many situations the data is reprocessed or
accidently executed. This test ensures multiple reruns of the
ETL process with the same data do not generate extra
records.

ETL
Performance
Test

The data processing must finish within the required
timeframe. ETL performance test ensures that the ETL
processing time is acceptable by checking the run logs.

Scope of ETL Testing
The scope of ETL testing is restricted to ensuring the ETL process is correctly

developed, and it is processing data as per the business requirements.

– Data Transformation and data loading is correct.
– ETL process does not create duplicate data.
– ETL process execution is done in proper order.
– The ETL process has correct incremental logic for processing data.
– The ETL emits proper exit codes on errors.
– The ETL Processes do not crash due to data exceptions.
– The ETL process logs metadata about its process.

Conclusion
There are many ways to do ETL testing. Some do it manually while others

use legacy approaches. Hope this becomes clear that going forward the

rules based ETL testing is the only viable solution to do ETL testing at scale.

Let us know what you think in the comments below.

About iCEDQ

iCEDQ is an industry leading DataOps platform for Data Test Automation

and Production Data Monitoring. iCEDQ is a certified Snowflake technology

partner. Our clients, such as Albertsons, Fidelity, and BMC are extensively

using iCEDQ and RuleX software for their Snowflake data migration testing.

Also, consider iCEDQ DataOps Platform for:

Legacy Database ETL / Data Warehouse

Cloud Data Migration

BI Report Testing Big

Data Testing

Production Data

iCEDQ iCEDQ

Migration

Snowflake

Contact Us: 60 Long Ridge Road, Suite 303, Stamford CT 06902 | contact@iCEDQ.com | +1 (203) 666-4442

https://icedq.com/tag/etl-testing

